Power BI Connector for Python
In this article you will learn how to integrate Using Power BI Connector you will be able to connect, read, and write data from within Python. Follow the steps below to see how we would accomplish that. The driver mentioned above is part of ODBC PowerPack which is a collection of high-performance Drivers for various API data source (i.e. REST API, JSON, XML, CSV, Amazon S3 and many more). Using familiar SQL query language you can make live connections and read/write data from API sources or JSON / XML / CSV Files inside SQL Server (T-SQL) or your favorite Reporting (i.e. Power BI, Tableau, Qlik, SSRS, MicroStrategy, Excel, MS Access), ETL Tools (i.e. Informatica, Talend, Pentaho, SSIS). You can also call our drivers from programming languages such as JAVA, C#, Python, PowerShell etc. If you are new to ODBC and ZappySys ODBC PowerPack then check the following links to get started. |
Connect to Power BI in other apps
|
Create ODBC Data Source (DSN) based on ZappySys API Driver
Step-by-step instructions
To get data from Power BI using Python we first need to create a DSN (Data Source) which will access data from Power BI. We will later be able to read data using Python. Perform these steps:
-
Install ZappySys ODBC PowerPack.
-
Open ODBC Data Sources (x64):
-
Create a User Data Source (User DSN) based on ZappySys API Driver
ZappySys API DriverYou should create a System DSN (instead of a User DSN) if the client application is launched under a Windows System Account, e.g. as a Windows Service. If the client application is 32-bit (x86) running with a System DSN, use ODBC Data Sources (32-bit) instead of the 64-bit version. -
When the Configuration window appears give your data source a name if you haven't done that already, then select "Power BI" from the list of Popular Connectors. If "Power BI" is not present in the list, then click "Search Online" and download it. Then set the path to the location where you downloaded it. Finally, click Continue >> to proceed with configuring the DSN:
PowerBiDSNPower BI -
Now it's time to configure the Connection Manager. Select Authentication Type, e.g. Token Authentication. Then select API Base URL (in most cases, the default one is the right one). More info is available in the Authentication section.
OAuth App must be created in Microsoft Azure AD. These settings typically found here https://docs.microsoft.com/en-us/graph/auth-register-app-v2. [API Help..]
Steps to get Power BI Credentials : User Credentials [OAuth]
Firstly, login into Azure Portal and there create an OAuth application:
- Go to Azure Portal and login there.
- Then go to Azure Active Directory.
- On the left side click menu item App registrations
- Then proceed with clicking New registration.
- Enter a name for your application.
- Select the account types to support with the Supported account types option.
- In Redirect URI, select Web.
- In the textbox enter https://zappysys.com/oauth as the Redirect URI or another valid redirect URL.
- Use this same Redirect URI in the Redirect URI (must match App Redirect URL) grid row.
- Copy Client ID and paste it into the API Connection Manager configuration grid in the Client ID row.
- Click on the Endpoints link and copy the OAuth 2.0 authorization endpoint (v2) URL to the Authorization URL grid row. Usually it looks similar to this:
- https://login.microsoftonline.com/daed1250-xxxx-xxxx-xxxx-ef0a982d3d1e/oauth2/v2.0/authorize
- Copy the OAuth 2.0 token endpoint (v2) URL to the Token URL grid row. Usually it looks similar to this:
- https://login.microsoftonline.com/daed1250-xxxx-xxxx-xxxx-ef0a982d3d1e/oauth2/v2.0/token
- Close "Endpoints" popup and create a Client Secret in the Certificates & secrets tab.
- Proceed by clicking New client secret and setting expiration period. Copy the client secret and paste it into configuration grid in Client Secret row.
- Now lets setup permissions for the app. Click on API Permissions and on the page click Plus Sign Add Permission
- Click on Microsoft Graph API and then choose Delegated Permissions
- on Permission list page search or choose permissions as needed. We need to enable following Permissions from 2 Sections: Microsoft Graph API and Power BI Service.
- Make sure you have checked below permissions (If you do not need Write feature then you can skip Write scopes)
offline_access Dataset.ReadWrite.All
- Click Generate Token to generate tokens.
- That's it!
Fill in all required parameters and set optional parameters if needed:
PowerBiDSNPower BIUser Credentials [OAuth]https://api.powerbi.com/v1.0/myorgRequired Parameters Authorization URL Fill in the parameter... Token URL Fill in the parameter... Client ID Fill in the parameter... Scope Fill in the parameter... Default Dataset (select after generating tokens) Fill in the parameter... Optional Parameters Client Secret Fill in the parameter... Redirect URI (must match App Redirect URI) Fill in the parameter... Default Workspace (Keep Empty for My Workspace - select after generating tokens) Fill in the parameter... RetryMode Fill in the parameter... RetryStatusCodeList Fill in the parameter... RetryCountMax Fill in the parameter... RetryWaitTimeMs Fill in the parameter... RetryMultiplyWaitTime Fill in the parameter... Login options Fill in the parameter... -
Once the data source has been configured, you can preview data. Select the Preview tab and use settings similar to the following to preview data:
-
Click OK to finish creating the data source.
Video instructions
Read data in Python
Using ODBC DSN
-
Python code to get the data:
PowerBiDSN') -
When you run the code it will make the API call and read the data:
-
Here is Python program's code in text format:
import pyodbc conn = pyodbc.connect('DSN=PowerBiDSN') cursor = conn.cursor() #execute query to fetch data from API service cursor.execute("SELECT id,title FROM products") row = cursor.fetchone() while row: print(row) row = cursor.fetchone() ##For loop example #for row in cursor: # print(row)
Using a full ODBC connection string
If you want to avoid being dependent on a DSN and creating multiple DSNs for each platform (x86, x64), then you can use a fully qualified connection string. Simply go to your DSN and copy the Connection String:
-
Open ODBC data source configuration and click Copy settings:
ZappySys API Driver - Power BIConnect to your Power BI account and retrieve data, refresh datasets, etc.PowerBiDSN
- The window opens, telling us the connection string was successfully copied to the clipboard:
-
Then in your Python code use Connection String when initializing OdbcConnection object, for example:
conn = pyodbc.connect('DRIVER={ZappySys API Driver};ServiceUrl=https://yourservices.provider.com/api/xxxx....;AuthName=Http;')
How to install `pyodbc` in the Python?
You would need to install pyodbc
in Python if you intend to establish connections to databases that support ODBC (Open Database Connectivity). This module facilitates communication between Python applications and various database management systems, enabling you to perform operations such as querying, retrieving data, and managing databases. Here's how you can install pyodbc
in Python:
Installation Steps:
Ensure you have Python installed on your system. If not, download it from the official Python website and follow the installation instructions.
Open your terminal or command prompt.
-
Use the following command to install
pyodbc
using pip, the Python package installer:python -m pip install "pyodbc"
Make sure you have a stable internet connection and the necessary permissions to install Python packages.
Reasons to Install:
- If pyodbc is not installed, your Python script will generate the following error:
"ModuleNotFoundError: No module named 'pyodbc'"
. Database Connectivity:
pyodbc
allows Python to connect to various databases that support ODBC, such as Microsoft SQL Server, PostgreSQL, MySQL, and more.Data Operations: It facilitates the execution of SQL queries, retrieval of data, and other database operations from within Python scripts.
Cross-Platform Support:
pyodbc
is designed to work across different operating systems, including Windows, macOS, and various Linux distributions.Simplicity and Efficiency: The module provides an intuitive interface for managing database transactions and connections, simplifying the process of working with databases in Python.
By installing pyodbc
, you can seamlessly integrate your Python applications with a wide range of ODBC-supported databases, enabling efficient and effective data management and analysis.
Advanced topics
Create Custom Stored Procedure in ZappySys Driver
You can create procedures to encapsulate custom logic and then only pass handful parameters rather than long SQL to execute your API call.
Steps to create Custom Stored Procedure in ZappySys Driver. You can insert Placeholders anywhere inside Procedure Body. Read more about placeholders here
-
Go to Custom Objects Tab and Click on Add button and Select Add Procedure:
-
Enter the desired Procedure name and click on OK:
-
Select the created Stored Procedure and write the your desired stored procedure and Save it and it will create the custom stored procedure in the ZappySys Driver:
Here is an example stored procedure for ZappySys Driver. You can insert Placeholders anywhere inside Procedure Body. Read more about placeholders here
CREATE PROCEDURE [usp_get_orders] @fromdate = '<<yyyy-MM-dd,FUN_TODAY>>' AS SELECT * FROM Orders where OrderDate >= '<@fromdate>';
-
That's it now go to Preview Tab and Execute your Stored Procedure using Exec Command. In this example it will extract the orders from the date 1996-01-01:
Exec usp_get_orders '1996-01-01';
-
Let's generate the SQL Server Query Code to make the API call using stored procedure. Go to Code Generator Tab, select language as SQL Server and click on Generate button the generate the code.
As we already created the linked server for this Data Source, in that you just need to copy the Select Query and need to use the linked server name which we have apply on the place of [MY_API_SERVICE] placeholder.
SELECT * FROM OPENQUERY([MY_API_SERVICE], 'EXEC usp_get_orders @fromdate=''1996-07-30''')
-
Now go to SQL served and execute that query and it will make the API call using stored procedure and provide you the response.
Create Custom Virtual Table in ZappySys Driver
ZappySys API Drivers support flexible Query language so you can override Default Properties you configured on Data Source such as URL, Body. This way you don't have to create multiple Data Sources if you like to read data from multiple EndPoints. However not every application support supplying custom SQL to driver so you can only select Table from list returned from driver.
If you're dealing with Microsoft Access and need to import data from an SQL query, it's important to note that Access doesn't allow direct import of SQL queries. Instead, you can create custom objects (Virtual Tables) to handle the import process.
Many applications like MS Access, Informatica Designer wont give you option to specify custom SQL when you import Objects. In such case Virtual Table is very useful. You can create many Virtual Tables on the same Data Source (e.g. If you have 50 URLs with slight variations you can create virtual tables with just URL as Parameter setting.
-
Go to Custom Objects Tab and Click on Add button and Select Add Table:
-
Enter the desired Table name and click on OK:
-
And it will open the New Query Window Click on Cancel to close that window and go to Custom Objects Tab.
-
Select the created table, Select Text Type AS SQL and write the your desired SQL Query and Save it and it will create the custom table in the ZappySys Driver:
Here is an example SQL query for ZappySys Driver. You can insert Placeholders also. Read more about placeholders here
SELECT "ShipCountry", "OrderID", "CustomerID", "EmployeeID", "OrderDate", "RequiredDate", "ShippedDate", "ShipVia", "Freight", "ShipName", "ShipAddress", "ShipCity", "ShipRegion", "ShipPostalCode" FROM "Orders" Where "ShipCountry"='USA'
-
That's it now go to Preview Tab and Execute your custom virtual table query. In this example it will extract the orders for the USA Shipping Country only:
SELECT * FROM "vt__usa_orders_only"
-
Let's generate the SQL Server Query Code to make the API call using stored procedure. Go to Code Generator Tab, select language as SQL Server and click on Generate button the generate the code.
As we already created the linked server for this Data Source, in that you just need to copy the Select Query and need to use the linked server name which we have apply on the place of [MY_API_SERVICE] placeholder.
SELECT * FROM OPENQUERY([MY_API_SERVICE], 'EXEC [usp_get_orders] ''1996-01-01''')
-
Now go to SQL served and execute that query and it will make the API call using stored procedure and provide you the response.
Actions supported by Power BI Connector
Power BI Connector support following actions for REST API integration. If some actions are not listed below then you can easily edit Connector file and enhance out of the box functionality.Parameter | Description |
---|---|
Id |
|
Parameter | Description |
---|---|
WorkspaceId |
|
Parameter | Description |
---|---|
Id |
|
WorkspaceId |
|
Parameter | Description | ||||
---|---|---|---|---|---|
Definition |
|
||||
WorkspaceId |
|
Parameter | Description | ||||
---|---|---|---|---|---|
Id |
|
||||
WorkspaceId |
|
Parameter | Description | ||||
---|---|---|---|---|---|
Id |
|
||||
WorkspaceId |
|
Parameter | Description | ||||
---|---|---|---|---|---|
DatasetId |
|
||||
WorkspaceId |
|
Parameter | Description | ||||
---|---|---|---|---|---|
TableName |
|
||||
DatasetId |
|
||||
WorkspaceId |
|
Parameter | Description | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TableName |
|
||||||||||||
DatasetId |
|
||||||||||||
WorkspaceId |
|
||||||||||||
DaxFilter |
|
Parameter | Description | ||||
---|---|---|---|---|---|
TableName |
|
||||
DatasetId |
|
||||
WorkspaceId |
|
Parameter | Description | ||||
---|---|---|---|---|---|
TableName |
|
||||
DatasetId |
|
||||
WorkspaceId |
|
Parameter | Description | ||||
---|---|---|---|---|---|
DAX query |
|
||||
DatasetId |
|
||||
WorkspaceId |
|
Parameter | Description |
---|---|
Url |
|
Body |
|
IsMultiPart |
|
Filter |
|
Headers |
|
Power BI Connector Examples for Python Connection
This page offers a collection of SQL examples designed for seamless integration with the ZappySys API ODBC Driver under ODBC Data Source (36/64) or ZappySys Data Gateway, enhancing your ability to connect and interact with Prebuilt Connectors effectively.
Workspaces - Get Workspaces [Read more...]
SELECT *
FROM Workspaces
Workspaces - Get a Workspace [Read more...]
SELECT *
FROM Workspaces
WHERE Id='aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee'
Datasets - Get Datasets [Read more...]
SELECT *
FROM Datasets
Datasets - Get Datasets in a specified Workspace [Read more...]
SELECT *
FROM Datasets
WITH (WorkspaceId = 'aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee')
Datasets - Get a Dataset [Read more...]
SELECT *
FROM Datasets
WHERE Id='aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee'
Datasets - Create a Push Dataset [Read more...]
SELECT *
FROM create_push_dataset
WITH (Definition='{
"name": "My Push Dataset Name",
"defaultMode": "Push",
"tables": [
{
"name": "Products",
"columns": [
{
"name": "Id",
"dataType": "Int64"
},
{
"name": "Name",
"dataType": "string"
},
{
"name": "Category",
"dataType": "string"
},
{
"name": "IsComplete",
"dataType": "bool"
},
{
"name": "ManufacturedOn",
"dataType": "DateTime"
},
{
"name": "Sales",
"dataType": "Int64",
"formatString": "Currency"
},
{
"name": "Price",
"dataType": "Double",
"formatString": "Currency"
}
]
}
]
}'
)
-- More info on creating a Push Dataset:
-- https://learn.microsoft.com/en-us/rest/api/power-bi/push-datasets/datasets-post-dataset
Datasets - Create a Push Dataset with 2 Tables [Read more...]
SELECT *
FROM create_push_dataset
WITH (Definition='{
"name": "My Push Dataset Name",
"defaultMode": "Push",
"tables": [
{
"name": "Customers",
"columns": [
{
"name": "Id",
"dataType": "Int64"
},
{
"name": "Name",
"dataType": "string"
}
]
},
{
"name": "Products",
"columns": [
{
"name": "Id",
"dataType": "Int64"
},
{
"name": "Name",
"dataType": "string"
},
{
"name": "Category",
"dataType": "string"
},
{
"name": "IsComplete",
"dataType": "bool"
},
{
"name": "ManufacturedOn",
"dataType": "DateTime"
},
{
"name": "Sales",
"dataType": "Int64",
"formatString": "Currency"
},
{
"name": "Price",
"dataType": "Double",
"formatString": "Currency"
}
]
}
]
}'
)
-- More info on creating a Push Dataset:
-- https://learn.microsoft.com/en-us/rest/api/power-bi/push-datasets/datasets-post-dataset
Datasets - Delete a Dataset [Read more...]
SELECT *
FROM delete_dataset
WHERE Id = 'aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee'
-- More info on deleting a Dataset:
-- https://learn.microsoft.com/en-us/rest/api/power-bi/datasets/delete-dataset
Datasets - Refresh a Dataset [Read more...]
SELECT *
FROM refresh_dataset
WHERE Id = 'aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee'
-- More info on refreshing a Dataset:
-- https://learn.microsoft.com/en-us/rest/api/power-bi/datasets/refresh-dataset
Tables - Get Tables [Read more...]
SELECT *
FROM get_tables
Tables - Get Tables in a specified Dataset [Read more...]
SELECT *
FROM get_tables
WITH (DatasetId='aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee')
Tables - Get Table Columns [Read more...]
SELECT *
FROM get_table_columns
WITH (TableName='MyTable')
Tables - Get Table Columns in a specified Dataset [Read more...]
SELECT *
FROM get_table_columns
WITH (TableName='MyTable',
DatasetId='aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee')
Tables - Get Table Rows (Use default Workspace and Dataset) [Read more...]
SELECT *
FROM MyTable
Tables - Get Table Rows for a specified Workspace and Dataset [Read more...]
SELECT *
FROM get_table_rows
WITH(
"TableName"='Products'
, "DatasetId"='11b6c287-51d3-4061-bed8-811a4e5f6ce9'
, "WorkspaceId"='848353e2-f3b1-4fb4-89d7-44e84b8bdf9f'
)
Tables - Insert / Update / Delete Rows for a specified Workspace and Dataset [Read more...]
INSERT INTO Products
SOURCE(
'MSSQL',
'Data Source=localhost\developer;Initial Catalog=Northwind;Integrated Security=true',
' SELECT T.* FROM ( SELECT TOP 50
ProductName AS [Name]
,C.CategoryName AS Category
,Discontinued AS IsComplete
,GETDATE() AS ManufacturedOn
,CAST(UnitPrice * ReOrderLevel * 100 AS BIGINT) AS Sales
,CAST(UnitPrice AS DECIMAL) AS Price
FROM Northwind.dbo.Products AS P
JOIN Northwind.dbo.Categories C ON P.CategoryId = P.CategoryId
) AS T
CROSS JOIN GENERATE_SERIES(1, 2000)
-- COMMENT: 50 x 2000 = 100 000 rows
'
)
CONNECTION(
Parameters = '[{ Name: "TokenUrl",Value:"https://login.microsoftonline.com/organizations/oauth2/v2.0/token"}
,{ Name: "DatasetId",Value: "6a0e04da-a6e4-4533-abe4-30fcabd0e2a5"},
{ Name: "WorkspaceId",Value: "848353e2-f3b1-4fb4-89d7-44e84b8bdf9f"}]'
)
Tables - Using an INSERT statement [Read more...]
INSERT INTO MyTable(MyColumn1, MyColumn2, MyColumn3, MyColumn4, MyColumn5)
VALUES (1001, 'Glass', true, '2001-02-03', 195.95)
Tables - Using an INSERT statement in a specified Dataset [Read more...]
INSERT INTO MyTable(MyColumn1, MyColumn2, MyColumn3, MyColumn4, MyColumn5)
VALUES (1001, 'Glass', true, '2001-02-03', 195.95)
WITH (DatasetId='aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee')
Tables - Get Table rows [Read more...]
SELECT *
FROM get_table_rows
WITH (TableName='MyTable')
Tables - Get Table rows in a specified Dataset [Read more...]
SELECT *
FROM get_table_rows
WITH (TableName='MyTable', DatasetId='aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee')
Tables - Truncate a Push Dataset Table [Read more...]
SELECT *
FROM truncate_push_dataset_table
WITH (TableName='MyTable')
-- More info on truncating a Push Dataset Table:
-- https://learn.microsoft.com/en-us/rest/api/power-bi/push-datasets/datasets-delete-rows
Tables - Truncate a Push Dataset Table in a specified Dataset [Read more...]
SELECT *
FROM truncate_push_dataset_table
WITH (DatasetId='aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee', TableName='MyTable')
-- More info on truncating a Push Dataset Table:
-- https://learn.microsoft.com/en-us/rest/api/power-bi/push-datasets/datasets-delete-rows
Execute a DAX query - Evaluating a Table [Read more...]
SELECT *
FROM execute_dax_query
WITH (Query='EVALUATE ''MyTable''')
-- More info on 'EVALUATE' statement and DAX queries:
-- https://dax.guide/st/evaluate/
-- https://learn.microsoft.com/en-us/dax/dax-queries
-- https://learn.microsoft.com/en-us/dax/filter-functions-dax
-- https://learn.microsoft.com/en-us/dax/dax-syntax-reference
Execute a DAX query - Using FILTER function with simple expression [Read more...]
SELECT *
FROM execute_dax_query
WITH (Query='EVALUATE FILTER(''MyTable'', [MyColumn] = "MyValue"')
-- More info on 'EVALUATE' statement and DAX queries:
-- https://dax.guide/st/evaluate/
-- https://dax.guide/filter/
-- https://dax.guide/operators/
-- https://learn.microsoft.com/en-us/dax/dax-queries
-- https://learn.microsoft.com/en-us/dax/dax-syntax-reference
Execute a DAX query - Using FILTER function with AND and OR operators [Read more...]
SELECT *
FROM execute_dax_query
WITH (Query='EVALUATE FILTER(''MyTable'', [MyColumn1] = "MyValue" && ([MyColumn2] > 0 || [MyColumn3] <= 1000))')
-- More info on 'EVALUATE' statement and DAX queries:
-- https://dax.guide/operators/
-- https://learn.microsoft.com/en-us/dax/dax-queries
-- https://learn.microsoft.com/en-us/dax/dax-syntax-reference
Execute a DAX query - Selecting specific columns from a Table [Read more...]
SELECT *
FROM execute_dax_query
WITH (Query='EVALUATE
SELECTCOLUMNS (
''MyTable'',
"MyColumn1 alias", [MyColumn1],
"MyColumn2 alias", [MyColumn2]
)
ORDER BY "MyColumn2 alias"'
)
-- More info on 'EVALUATE' statement and DAX queries:
-- https://dax.guide/st/evaluate/
-- https://dax.guide/selectcolumns/
-- https://learn.microsoft.com/en-us/dax/dax-queries
-- https://learn.microsoft.com/en-us/dax/dax-syntax-reference
Execute a DAX query - Selecting and sorting TOP N rows [Read more...]
SELECT *
FROM execute_dax_query
WITH (Query='EVALUATE
TOPN(1000, ''MyTable'', [MyColumnOrExpression], ASC)')
-- More info on 'EVALUATE' statement and DAX queries:
-- https://dax.guide/st/evaluate/
-- https://dax.guide/topn/
-- https://learn.microsoft.com/en-us/dax/dax-queries
-- https://learn.microsoft.com/en-us/dax/dax-syntax-reference
Execute a DAX query - A complicated query [Read more...]
SELECT *
FROM execute_dax_query
WITH (Query='
DEFINE
VAR MinimumAmount = 2000000
VAR MaximumAmount = 8000000
EVALUATE
FILTER (
ADDCOLUMNS (
SUMMARIZE (Sales, Products[Category]),
"CategoryAmount", [Sales Amount]
),
AND (
[CategoryAmount] <= MinimumAmount,
[CategoryAmount] >= MaximumAmount
)
)
ORDER BY [CategoryAmount]"')
-- More info on 'EVALUATE' statement and DAX queries:
-- https://dax.guide/st/evaluate/
-- https://dax.guide/addcolumns/
-- https://dax.guide/summarize/
-- https://dax.guide/st/order-by/
-- https://learn.microsoft.com/en-us/dax/dax-queries
-- https://learn.microsoft.com/en-us/dax/filter-functions-dax
-- https://learn.microsoft.com/en-us/dax/dax-syntax-reference
Generics - A simple generic API request [Read more...]
SELECT *
FROM generic_request
WITH (Url='/groups',
Filter='$.value[*]')
/*
EXPLANATION:
- This configuration calls Power BI REST API "Get Groups" endpoint and gets the Workspaces back.
- This is achieved by "/groups" value in the "Url" parameter.
- The SQL query parameter "Filter" uses JsonPath "$.value[*]".
- This gets JSON objects from "value" array and transforms them into SQL rows.
MORE INFORMATION:
- About "Get Groups" REST API endpoint:
https://learn.microsoft.com/en-us/rest/api/power-bi/groups/get-groups
- About JsonPath used in "Filter" parameter:
https://zappysys.com/blog/jsonpath-examples-expression-cheetsheet
*/
Generics - A generic API request with URL parameter [Read more...]
SELECT *
FROM generic_request
WITH (Url='/groups?$filter=contains(name,''MyWorkspace'') or name eq ''My Blue Workspace''',
Filter='$.value[*]')
/*
EXPLANATION:
- This configuration calls Power BI REST API "Get Groups" endpoint and gets the Workspaces back.
- This is achieved by "/groups" value in the "Url" parameter.
- Workspaces are filtered on the Power BI REST API side by using the "$filter" URL parameter.
- Only those Workspaces are returned that:
> contain a string value "MyWorkspace" or
> if the Workspace name is "My Blue Workspace" (each single quote is escaped with two single quotes).
- The SQL query parameter "Filter" uses JsonPath "$.value[*]".
- This gets JSON objects from "value" array and transforms them into SQL rows.
MORE INFORMATION:
- About "Get Groups" REST API endpoint:
https://learn.microsoft.com/en-us/rest/api/power-bi/groups/get-groups
- About JsonPath used in "Filter" parameter:
https://zappysys.com/blog/jsonpath-examples-expression-cheetsheet
*/
Conclusion
In this article we discussed how to connect to Power BI in Python and integrate data without any coding. Click here to Download Power BI Connector for Python and try yourself see how easy it is. If you still have any question(s) then ask here or simply click on live chat icon below and ask our expert (see bottom-right corner of this page).
Download Power BI Connector for Python
Documentation
More integrations
Other application integration scenarios for Power BI
Other connectors for Python
Download Power BI Connector for Python
Documentation
How to connect Power BI in Python?
How to get Power BI data in Python?
How to read Power BI data in Python?
How to load Power BI data in Python?
How to import Power BI data in Python?
How to pull Power BI data in Python?
How to push data to Power BI in Python?
How to write data to Power BI in Python?
How to POST data to Power BI in Python?
Call Power BI API in Python
Consume Power BI API in Python
Power BI Python Automate
Power BI Python Integration
Integration Power BI in Python
Consume real-time Power BI data in Python
Consume real-time Power BI API data in Python
Power BI ODBC Driver | ODBC Driver for Power BI | ODBC Power BI Driver | SSIS Power BI Source | SSIS Power BI Destination
Connect Power BI in Python
Load Power BI in Python
Load Power BI data in Python
Read Power BI data in Python
Power BI API Call in Python