Endpoint Insert documents
Name
insert_documents
Description
Related Tables
[Dynamic Table]
, [Dynamic Table]
Parameters
Parameter | Required | Options |
---|---|---|
Name:
Label: Index |
YES | |
Name:
Label: Alias (Deprecated - Use Index instead) |
Output Columns
Label | Data Type (SSIS) | Data Type (SQL) | Length | Description |
---|---|---|---|---|
ErrorFound |
DT_BOOL
|
bit
|
||
Result |
DT_WSTR
|
nvarchar(4000)
|
4000 | |
HttpStatus |
DT_I4
|
int
|
||
Id |
DT_WSTR
|
nvarchar(50)
|
50 | |
Index |
DT_WSTR
|
nvarchar(150)
|
150 | |
Type |
DT_WSTR
|
nvarchar(50)
|
50 | |
IndexUuid |
DT_WSTR
|
nvarchar(50)
|
50 | |
Reason |
DT_WSTR
|
nvarchar(4000)
|
4000 | |
ErrorType |
DT_WSTR
|
nvarchar(250)
|
250 | |
ErrorCausedByType |
DT_WSTR
|
nvarchar(250)
|
250 | |
ErrorCausedByreason |
DT_WSTR
|
nvarchar(2000)
|
2000 | |
Version |
DT_I4
|
int
|
||
SequenceNo |
DT_I4
|
int
|
||
PrimaryTerm |
DT_I4
|
int
|
||
ShardsFailed |
DT_I4
|
int
|
||
ShardsSuccessful |
DT_I4
|
int
|
||
ShardsTotal |
DT_I4
|
int
|
||
Took |
DT_I4
|
int
|
Input Columns
Label | Data Type (SSIS) | Data Type (SQL) | Length | Description |
---|---|---|---|---|
_id |
DT_WSTR
|
nvarchar(150)
|
150 | |
[$parent.Pivot_Path$] |
DT_WSTR
|
nvarchar(4000)
|
4000 | |
[$parent.Pivot_Path$].lat |
DT_R8
|
float
|
||
[$parent.Pivot_Path$].lon |
DT_R8
|
float
|
||
[$parent.Pivot_Path$].type |
DT_WSTR
|
nvarchar(30)
|
30 | |
[$parent.Pivot_Path$].coordinates |
DT_TEXT
|
varchar(MAX)
|
Examples
SSIS
Use ElasticSearch Connector in API Source or in API Destination SSIS Data Flow components to read or write data.
API Destination
This Endpoint belongs to the [Dynamic Table] table, therefore it is better to use it, instead of accessing the endpoint directly. Use this table and table-operation pair to insert documents:
Optional Parameters | |
---|---|
DoNotAddMultiContentSeparator | True |
RowHeaderFooterContinueOnError | True |
RowHeader |

ODBC application
Use these SQL queries in your ODBC application data source:
Insert documents into index with _id autogenerated
When you dont supply _id column value, ElasticSearch will generate it automatically for you.
INSERT INTO MyIndex([MyCol1], [MyCol2] ) VALUES (100, 'A1')
Insert documents into index with your own _id
Inserts documents into index with _id column. _id is string datatype so can be
INSERT INTO MyIndex(_id, [MyCol1], [MyCol2] ) VALUES ('A1234', 100, 'A1')
Insert documents using nested attribute and raw fragments (JSON sub-documents, arrays)
This example produces JSON document like this {"_id": "some_auto_generated_id" , "Location": { "City" : "Atlanta" , "ZipCode" : "30060" },"ColorsArray ": ["Red", "Blue", "Green"],"SomeNestedDoc": { "Col1" : "aaa" , "Col2" : "bbb" , "Col2" : "ccc" }} . Notice that how Column name with Dot translated into nested Columns (i.e. City, ZipCode) and Prefix raw:: allowed to treat value as array or sub document.
INSERT INTO MyIndexName ([Location.City], [Location.ZipCode], [raw::ColorsArray], [raw::SomeNestedDoc] )
--raw JSON must be in one line
VALUES ('Atlanta', '30060', '["red","green","blue"]', '{"Col1":"aaa","Col2":"bbb","Col3":"ccc"}' )
Insert documents using various data types
This example shows how to insert values for different datatype fields. Some fields can accept value as Raw JSON (e.g. nested, object, geo_point, geo_shape). Object field type can also accept value by nested field (e.g. [object_field.field1] )
INSERT INTO my_index (
binary_field,
boolean_field,
byte_field,
date_field,
double_field,
float_field,
geo_point_field, --raw
--OR--
--"geo_point_field.lat",
--"geo_point_field.lon",
geo_shape_field, --raw
--OR--
--"geo_shape_field.type",
--"geo_shape_field.coordinates",
integer_field,
ip_field,
keyword_field,
long_field,
nested_field, --raw
object_field, --raw
--OR--
--"object_field.field1",
--"object_field.field2",
short_field,
text_field
)
VALUES(
'SGVsbG8gd29ybGQ=', --binary_field --base64 value of "Hello world"
false, --bool
117, --byte_field
'2012-12-31T23:59:59.123', --date_field
1.123456789, --double_field
1.123456789, --float_field
--raw JSON must be in one line
'{ "lat": 40.7128, "lon": -74.0060 }', --geo_point_field
--OR--
-- 40.7128, -74.0060,
'{ "type": "polygon", "coordinates": [[[-74.0060, 40.7128], [-73.9960, 40.7128], [-73.9960, 40.7028], [-74.0060, 40.7028], [-74.0060, 40.7128]]] }', --geo_shape_field
--OR--
--'polygon',
--'[[[-74.0060, 40.7128], [-73.9960, 40.7128], [-73.9960, 40.7028], [-74.0060, 40.7028], [-74.0060, 40.7128]]]',
123, --integer_field
'127.0.0.1', --ip_field
'thhi is text', --keyword_field
1234567890, --long_field
--raw JSON must be in one line
'[{"nested_property_1":"nested text 1", "nested_property_2":100}, {"nested_property_1":"nested text 2", "nested_property_2":101}]', --nested_field
'{"field1":"A","field2":"B"}', --object_field (Raw Value)
--OR--
--'object field keyword 1', --object_field.field1
--123, --object_field.field2
1, --short_field
'text field ' --text_field
)
Insert raw document (_rawdoc_ usage)
This example shows how to insert document(s) in a raw format. When you use column name _rawdoc_ then its treated as RAW body. Notice that we use @ before string literal in value. This allow to use escape sequence (in this case \n for new line).
INSERT INTO shop(_RAWDOC_)
--raw JSON must be in one line
VALUES(@'{"create":{"_index":"shop","_id":"1"}}\n{"name":"record-1","colors":["yellow","orange"]}\n{"create":{"_index":"shop","_id":"2"}}\n{"name":"record-2","colors":["red","blue"]}\n')
Insert documents into index with _id autogenerated
When you dont supply _id column value, ElasticSearch will generate it automatically for you.
INSERT INTO MyIndex([MyCol1], [MyCol2] ) VALUES (100, 'A1')
Insert documents into index with your own _id
Inserts documents into index with _id column. _id is string datatype so can be
INSERT INTO MyIndex(_id, [MyCol1], [MyCol2] ) VALUES ('A1234', 100, 'A1')
Insert documents using nested attribute and raw fragments (JSON sub-documents, arrays)
This example produces JSON document like this {"_id": "some_auto_generated_id" , "Location": { "City" : "Atlanta" , "ZipCode" : "30060" },"ColorsArray ": ["Red", "Blue", "Green"],"SomeNestedDoc": { "Col1" : "aaa" , "Col2" : "bbb" , "Col2" : "ccc" }} . Notice that how Column name with Dot translated into nested Columns (i.e. City, ZipCode) and Prefix raw:: allowed to treat value as array or sub document.
INSERT INTO MyIndexName ([Location.City], [Location.ZipCode], [raw::ColorsArray], [raw::SomeNestedDoc] )
--raw JSON must be in one line
VALUES ('Atlanta', '30060', '["red","green","blue"]', '{"Col1":"aaa","Col2":"bbb","Col3":"ccc"}' )
Insert documents using various data types
This example shows how to insert values for different datatype fields. Some fields can accept value as Raw JSON (e.g. nested, object, geo_point, geo_shape). Object field type can also accept value by nested field (e.g. [object_field.field1] )
INSERT INTO my_index (
binary_field,
boolean_field,
byte_field,
date_field,
double_field,
float_field,
geo_point_field, --raw
--OR--
--"geo_point_field.lat",
--"geo_point_field.lon",
geo_shape_field, --raw
--OR--
--"geo_shape_field.type",
--"geo_shape_field.coordinates",
integer_field,
ip_field,
keyword_field,
long_field,
nested_field, --raw
object_field, --raw
--OR--
--"object_field.field1",
--"object_field.field2",
short_field,
text_field
)
VALUES(
'SGVsbG8gd29ybGQ=', --binary_field --base64 value of "Hello world"
false, --bool
117, --byte_field
'2012-12-31T23:59:59.123', --date_field
1.123456789, --double_field
1.123456789, --float_field
--raw JSON must be in one line
'{ "lat": 40.7128, "lon": -74.0060 }', --geo_point_field
--OR--
-- 40.7128, -74.0060,
'{ "type": "polygon", "coordinates": [[[-74.0060, 40.7128], [-73.9960, 40.7128], [-73.9960, 40.7028], [-74.0060, 40.7028], [-74.0060, 40.7128]]] }', --geo_shape_field
--OR--
--'polygon',
--'[[[-74.0060, 40.7128], [-73.9960, 40.7128], [-73.9960, 40.7028], [-74.0060, 40.7028], [-74.0060, 40.7128]]]',
123, --integer_field
'127.0.0.1', --ip_field
'thhi is text', --keyword_field
1234567890, --long_field
--raw JSON must be in one line
'[{"nested_property_1":"nested text 1", "nested_property_2":100}, {"nested_property_1":"nested text 2", "nested_property_2":101}]', --nested_field
'{"field1":"A","field2":"B"}', --object_field (Raw Value)
--OR--
--'object field keyword 1', --object_field.field1
--123, --object_field.field2
1, --short_field
'text field ' --text_field
)
Insert raw document (_rawdoc_ usage)
This example shows how to insert document(s) in a raw format. When you use column name _rawdoc_ then its treated as RAW body. Notice that we use @ before string literal in value. This allow to use escape sequence (in this case \n for new line).
INSERT INTO shop(_RAWDOC_)
--raw JSON must be in one line
VALUES(@'{"create":{"_index":"shop","_id":"1"}}\n{"name":"record-1","colors":["yellow","orange"]}\n{"create":{"_index":"shop","_id":"2"}}\n{"name":"record-2","colors":["red","blue"]}\n')
insert_documents
endpoint belongs to
[Dynamic Table]
, [Dynamic Table]
table(s), and can therefore be used via those table(s).
SQL Server
Use these SQL queries in SQL Server after you create a data source in Data Gateway:
Insert documents into index with _id autogenerated
When you dont supply _id column value, ElasticSearch will generate it automatically for you.
DECLARE @MyQuery NVARCHAR(MAX) = 'INSERT INTO MyIndex([MyCol1], [MyCol2] ) VALUES (100, ''A1'')';
EXEC (@MyQuery) AT [LS_TO_ELASTICSEARCH_IN_GATEWAY];
Insert documents into index with your own _id
Inserts documents into index with _id column. _id is string datatype so can be
DECLARE @MyQuery NVARCHAR(MAX) = 'INSERT INTO MyIndex(_id, [MyCol1], [MyCol2] ) VALUES (''A1234'', 100, ''A1'')';
EXEC (@MyQuery) AT [LS_TO_ELASTICSEARCH_IN_GATEWAY];
Insert documents using nested attribute and raw fragments (JSON sub-documents, arrays)
This example produces JSON document like this {"_id": "some_auto_generated_id" , "Location": { "City" : "Atlanta" , "ZipCode" : "30060" },"ColorsArray ": ["Red", "Blue", "Green"],"SomeNestedDoc": { "Col1" : "aaa" , "Col2" : "bbb" , "Col2" : "ccc" }} . Notice that how Column name with Dot translated into nested Columns (i.e. City, ZipCode) and Prefix raw:: allowed to treat value as array or sub document.
DECLARE @MyQuery NVARCHAR(MAX) = 'INSERT INTO MyIndexName ([Location.City], [Location.ZipCode], [raw::ColorsArray], [raw::SomeNestedDoc] )
--raw JSON must be in one line
VALUES (''Atlanta'', ''30060'', ''["red","green","blue"]'', ''{"Col1":"aaa","Col2":"bbb","Col3":"ccc"}'' )';
EXEC (@MyQuery) AT [LS_TO_ELASTICSEARCH_IN_GATEWAY];
Insert documents using various data types
This example shows how to insert values for different datatype fields. Some fields can accept value as Raw JSON (e.g. nested, object, geo_point, geo_shape). Object field type can also accept value by nested field (e.g. [object_field.field1] )
DECLARE @MyQuery NVARCHAR(MAX) = 'INSERT INTO my_index (
binary_field,
boolean_field,
byte_field,
date_field,
double_field,
float_field,
geo_point_field, --raw
--OR--
--"geo_point_field.lat",
--"geo_point_field.lon",
geo_shape_field, --raw
--OR--
--"geo_shape_field.type",
--"geo_shape_field.coordinates",
integer_field,
ip_field,
keyword_field,
long_field,
nested_field, --raw
object_field, --raw
--OR--
--"object_field.field1",
--"object_field.field2",
short_field,
text_field
)
VALUES(
''SGVsbG8gd29ybGQ='', --binary_field --base64 value of "Hello world"
false, --bool
117, --byte_field
''2012-12-31T23:59:59.123'', --date_field
1.123456789, --double_field
1.123456789, --float_field
--raw JSON must be in one line
''{ "lat": 40.7128, "lon": -74.0060 }'', --geo_point_field
--OR--
-- 40.7128, -74.0060,
''{ "type": "polygon", "coordinates": [[[-74.0060, 40.7128], [-73.9960, 40.7128], [-73.9960, 40.7028], [-74.0060, 40.7028], [-74.0060, 40.7128]]] }'', --geo_shape_field
--OR--
--''polygon'',
--''[[[-74.0060, 40.7128], [-73.9960, 40.7128], [-73.9960, 40.7028], [-74.0060, 40.7028], [-74.0060, 40.7128]]]'',
123, --integer_field
''127.0.0.1'', --ip_field
''thhi is text'', --keyword_field
1234567890, --long_field
--raw JSON must be in one line
''[{"nested_property_1":"nested text 1", "nested_property_2":100}, {"nested_property_1":"nested text 2", "nested_property_2":101}]'', --nested_field
''{"field1":"A","field2":"B"}'', --object_field (Raw Value)
--OR--
--''object field keyword 1'', --object_field.field1
--123, --object_field.field2
1, --short_field
''text field '' --text_field
)';
EXEC (@MyQuery) AT [LS_TO_ELASTICSEARCH_IN_GATEWAY];
Insert raw document (_rawdoc_ usage)
This example shows how to insert document(s) in a raw format. When you use column name _rawdoc_ then its treated as RAW body. Notice that we use @ before string literal in value. This allow to use escape sequence (in this case \n for new line).
DECLARE @MyQuery NVARCHAR(MAX) = 'INSERT INTO shop(_RAWDOC_)
--raw JSON must be in one line
VALUES(@''{"create":{"_index":"shop","_id":"1"}}\n{"name":"record-1","colors":["yellow","orange"]}\n{"create":{"_index":"shop","_id":"2"}}\n{"name":"record-2","colors":["red","blue"]}\n'')';
EXEC (@MyQuery) AT [LS_TO_ELASTICSEARCH_IN_GATEWAY];
Insert documents into index with _id autogenerated
When you dont supply _id column value, ElasticSearch will generate it automatically for you.
DECLARE @MyQuery NVARCHAR(MAX) = 'INSERT INTO MyIndex([MyCol1], [MyCol2] ) VALUES (100, ''A1'')';
EXEC (@MyQuery) AT [LS_TO_ELASTICSEARCH_IN_GATEWAY];
Insert documents into index with your own _id
Inserts documents into index with _id column. _id is string datatype so can be
DECLARE @MyQuery NVARCHAR(MAX) = 'INSERT INTO MyIndex(_id, [MyCol1], [MyCol2] ) VALUES (''A1234'', 100, ''A1'')';
EXEC (@MyQuery) AT [LS_TO_ELASTICSEARCH_IN_GATEWAY];
Insert documents using nested attribute and raw fragments (JSON sub-documents, arrays)
This example produces JSON document like this {"_id": "some_auto_generated_id" , "Location": { "City" : "Atlanta" , "ZipCode" : "30060" },"ColorsArray ": ["Red", "Blue", "Green"],"SomeNestedDoc": { "Col1" : "aaa" , "Col2" : "bbb" , "Col2" : "ccc" }} . Notice that how Column name with Dot translated into nested Columns (i.e. City, ZipCode) and Prefix raw:: allowed to treat value as array or sub document.
DECLARE @MyQuery NVARCHAR(MAX) = 'INSERT INTO MyIndexName ([Location.City], [Location.ZipCode], [raw::ColorsArray], [raw::SomeNestedDoc] )
--raw JSON must be in one line
VALUES (''Atlanta'', ''30060'', ''["red","green","blue"]'', ''{"Col1":"aaa","Col2":"bbb","Col3":"ccc"}'' )';
EXEC (@MyQuery) AT [LS_TO_ELASTICSEARCH_IN_GATEWAY];
Insert documents using various data types
This example shows how to insert values for different datatype fields. Some fields can accept value as Raw JSON (e.g. nested, object, geo_point, geo_shape). Object field type can also accept value by nested field (e.g. [object_field.field1] )
DECLARE @MyQuery NVARCHAR(MAX) = 'INSERT INTO my_index (
binary_field,
boolean_field,
byte_field,
date_field,
double_field,
float_field,
geo_point_field, --raw
--OR--
--"geo_point_field.lat",
--"geo_point_field.lon",
geo_shape_field, --raw
--OR--
--"geo_shape_field.type",
--"geo_shape_field.coordinates",
integer_field,
ip_field,
keyword_field,
long_field,
nested_field, --raw
object_field, --raw
--OR--
--"object_field.field1",
--"object_field.field2",
short_field,
text_field
)
VALUES(
''SGVsbG8gd29ybGQ='', --binary_field --base64 value of "Hello world"
false, --bool
117, --byte_field
''2012-12-31T23:59:59.123'', --date_field
1.123456789, --double_field
1.123456789, --float_field
--raw JSON must be in one line
''{ "lat": 40.7128, "lon": -74.0060 }'', --geo_point_field
--OR--
-- 40.7128, -74.0060,
''{ "type": "polygon", "coordinates": [[[-74.0060, 40.7128], [-73.9960, 40.7128], [-73.9960, 40.7028], [-74.0060, 40.7028], [-74.0060, 40.7128]]] }'', --geo_shape_field
--OR--
--''polygon'',
--''[[[-74.0060, 40.7128], [-73.9960, 40.7128], [-73.9960, 40.7028], [-74.0060, 40.7028], [-74.0060, 40.7128]]]'',
123, --integer_field
''127.0.0.1'', --ip_field
''thhi is text'', --keyword_field
1234567890, --long_field
--raw JSON must be in one line
''[{"nested_property_1":"nested text 1", "nested_property_2":100}, {"nested_property_1":"nested text 2", "nested_property_2":101}]'', --nested_field
''{"field1":"A","field2":"B"}'', --object_field (Raw Value)
--OR--
--''object field keyword 1'', --object_field.field1
--123, --object_field.field2
1, --short_field
''text field '' --text_field
)';
EXEC (@MyQuery) AT [LS_TO_ELASTICSEARCH_IN_GATEWAY];
Insert raw document (_rawdoc_ usage)
This example shows how to insert document(s) in a raw format. When you use column name _rawdoc_ then its treated as RAW body. Notice that we use @ before string literal in value. This allow to use escape sequence (in this case \n for new line).
DECLARE @MyQuery NVARCHAR(MAX) = 'INSERT INTO shop(_RAWDOC_)
--raw JSON must be in one line
VALUES(@''{"create":{"_index":"shop","_id":"1"}}\n{"name":"record-1","colors":["yellow","orange"]}\n{"create":{"_index":"shop","_id":"2"}}\n{"name":"record-2","colors":["red","blue"]}\n'')';
EXEC (@MyQuery) AT [LS_TO_ELASTICSEARCH_IN_GATEWAY];
insert_documents
endpoint belongs to
[Dynamic Table]
, [Dynamic Table]
table(s), and can therefore be used via those table(s).